PHYSICAL REVIEW E 69, 066213(2004)

Dislocation dynamics in an anisotropic stripe pattern
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The dynamics of dislocations confined to grain boundaries in a striped system are studied using electrocon-
vection in the nematic liquid crystal N4. In electroconvection, a striped pattern of convection rolls forms for
sufficiently high driving voltages. We consider the case of a rapid change in the voltage that takes the system
from a uniform state to a state consisting of striped domains with two different wave vectors. The domains are
separated by domain walls along one axis and a grain boundary of dislocations in the perpendicular direction.
The pattern evolves through dislocation motion parallel to the domain walls. We report on features of the
dislocation dynamics. The kinetics of the domain motion is quantified using three measures: dislocation
density, average domain wall length, and total domain wall length per area. All three quantities exhibit behavior
consistent with power-law evolution in time, with the defect density decaying‘4sthe average domain wall
length growing ag'/3, and the total domain wall length decaying ¥ The two different exponents are
indicative of the anisotropic growth of domains in the system.
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I. INTRODUCTION conserved, such as in binary fluids, and the exponent is 1/2
df it is not conserved, as in magnetic systef@$. Various

The dynamics of topological defects are observed t ; | . 0 del
dominate the temporal evolution of patterns in many physi/nteresting alternate cases exist, especially fontyemode

cal systems. However, our understanding of the quantitativ’ olrie and tWE dimen?ior[Q]. In contrast, no sihmilar gen-
contribution of the defect dynamics to the evolution of pat-€'@ framework exists for patterned domains. These are sys-

terns is still not complete. One area in which topologicall€M$S i which, within a domain, the system exhibits a pat-

defects potentially play a central role is the growth of do-{€"M, Such as stripes. . .
mains in a patterned system after a sudden change in the StIPES, or more generally patterns, occur in a wide range

external parameters. For many striped systems, such & SyStems{1,3], including convecting fluids, animal coats,
diblock copolymers and convection in fluids, many of thepolymer melts, and ferromagnets. Stripes occur both as an

. RN . equilibrium state of the system, such as in diblock copoly-
topological defectgsuch as disclinations and domain walls mers, and as a result of external driving, as in convection in

are the sa}‘me_ as those t'hat“ exist in cIa;sic models for the i1’ A sudden change of an external parameteench
growth of “uniform domains,” such as Ising models oy can pring the system from a spatially uniform state to a
models[1]. For uniform systems, the contribution of the t0- gyiped state that undergoes coarsening, or phase ordering.
pological defects to the time evolution of the domains isThe coarsening of striped domains has focusedsotropic
I‘elatively well undel’StOOC[Z], whereas this is not the case Systemq4_9]’ with a Significant fraction of the work focus-
for striped systems. ing on simulations of model equations, such as the Swift-
It is useful to briefly review the situation for uniform do- Hohenberg equatiof#—6,8,1Q. Experimental work has been
main growth[2]. One is generally interested in the evolution |limited to two systems, one isotropicliblock copolymers
of a system after a rapid change of an external parameter, ¢¥,9]) and one anisotropigelectroconvection in nematic lig-
a quench. Typically, one considers an initially uniform stateuid crystals[11,12). For isotropic systems, the stripes can
that immediately after the quench is no longer an equilibriumhave any orientation. In this case, the dominant defects are
or steady-state phase of the system. The new equilibriurdisclinations and domain walls, though dislocations are ob-
phase is degenerate, and domains of the different states forserved as well. For diblock copolymers, the measured
For example, in an Ising system, one would have domains ofrowth exponent is consistent with=1/4. Detailed studies
up and down spins. During the subsequent evolution of thef the disclination dynamics are able to explain this mea-
system, orcoarsening the domains are characterized by asured exponent7,9].
single length scale. This length grows as a power of titne For simulations of isotropic systems, growth exponents
where n is the growth exponent. We use the designationare usually consistent with 1/4—6] or 1/5[4—6,11. Fac-
“uniform domains” to refer to systems in which, within a tors affecting the measured exponent include external noise
domain, the system is uniform. Examples of this type ofand the quantity used to characterize the domains. There is
system include magnetic systems, metallic alloys, binary fluevidence that for small enough quench depths the growth
ids, and nematic liquid crystal&]. One of the main goals of exponent is 1/38,10,13. An open question is the connec-
this field is to understand the possible valuesx@nd other tion between the simulations and experiments with the
features of the late time scaling. For uniform systems, muchiblock copolymer systems. The dominant defects appear to
of the late-time behavior can be understood in terms of thde different between the simulations and experiment, leaving
topological defects of the order paramef{@]. For most open the question of a general explanation for the coarsening
cases, the growth exponent is 1/3 if the order parameter isehavior.
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For electroconvectioigan anisotropic systemtwo main
classes of patterns occur as the initial transition: normal and
obligue rolls[14-1§. Electroconvection uses a nematic lig-
uid crystal. The molecules of a liquid crystal align on aver-
age along a particular axis, referred to as the direfiat.
Normal rolls consist of a system of parallel rolls oriented
with the wave vector parallel to the director figlithe aver-
age axis of alignment for the molecuje$he main defect in
the normal roll regime is isolated dislocations. The dynamics
of these dislocations have been studied both experimentally
and theoretically{18-21], though not in the context of do-
main growth. Oblique rolls correspond to stripes in which
the wave vector forms a nonzero angle with respect to the
undistorted director field. In the oblique roll regime, a
guench typically produces a pattern consisting of domains of
stripes with only two orientations, referred to as zig and zag
rolls. In this case, the main defects are domain walls and
dislocations. For a particular case of electroconvection,
growth exponents of 1/4 were observgdd]. However, in
contrast to isotropic systems, disclinations were not present
in this system. Again, this points to the need to better under- ) o ) .
stand the dynamics of the various classes of defects if a_F'C- 1- (@) A schematic drawing illustrating a transition from a
general framework for understanding phase ordering in pa'd ©© @ zag and back to a zig region of the system. The black lines
tern forming systems is to emerge. represent lines of constant phase between the stripes. There are two

. ’ . horizontal domain walls, one at each transition. Also, one example
In considering the existing work, there are at least two . oo .
of each type of step dislocation is shown. The Burgers vector is also

obvious questions. Given that the uniform and pattern formTllustrated for one of the dislocations. The length of a horizontal

ing systems exhibit similar topological defects, why are they, -1 wall is indicated by,. (b) A close-up of a section of the
resulting growth exponents so different? Gi\(en the range 0gystem that shows two stepldislocatic(bkack squares The white

growth exponents observed for pattern forming systems, cagyyares are provided as an aid in counting the zig and zag rolls. One
they even be explained in terms of the dynamics of topologifings that there are two more zig rolls than zag, as expected with

cal defects? An important step in answering both of theseo dislocations. The dashed line highlights one of the horizontal
questions is elucidation of the defect dynamics. The workjomain walls. The scale bar represents 0.15 mm.

with diblock copolymers has already made important contri-

butions along these lines for disclinations. In this PAPEr, Weyt qefect kinetics: dislocation density, average domain wall

6]ength, and total domain wall length per area. The rest of the
paper is organized as follows. Section Il describes the experi-

i Flgulflethxbt) .'”S atto? vu?[\r/]v 0:; afpattter? 'mt an e:gct:(r)]ponvec- mental details. Section Il presents the results, and Sec. IV is
lon cell that Tustrates the detects ol interestin this paper, summary and discussion of the results.

The cell consists of a nematic liquid crystal confined be-
tween specially treated glass plates that align the director

parallel to the plates along a single axis. This axis is defined Il. EXPERIMENTAL DETAILS

to be thex axis, or horizontal direction. Thg axis, or verti-

cal direction, is also parallel to the glass plates, but perpen- The details of the experimental apparatus are described in
dicular to the undistorted director. Tiraxis is taken per- Ref. [22]. The nematic liquid crystal N4 was doped with
pendicular to the plates. The nematic liquid crystal is doped.1 wt% of tetran-butylammonium bromid¢(C,Hg)4NBr].

with ionic impurities. An ac voltage is applied perpendicular Commercial cell§23] with a quoted thickness of 2@m and

to the plates. There exists a critical value of the applied volt-l cn? electrodes were used, giving an aspect ratio of 435.
ageV, at which a transition from a spatially uniform state to The average wavelength of the rolls wasoh. The sample

a striped state occurs. The striped state consists of convectid@mperature was maintained at 30.0+£0.002°C. The patterns
rolls with a corresponding periodic variation of the director were observed from above using a modified shadowgraph
and charge density. As shown in Fig. 1, we studied the casgetup[22,24,25 that emphasized the contrast between zig
of oblique rolls and the two classes of topological defectsand zag rolls. The magnification was chosen to monitor the
are domain walls and dislocations. The dislocations are spdargest possible area of the sample while maintaining enough
cial in that they are mostly confined to vertical domain walls.resolution to resolve the stripe pattern. The area imaged con-
Disclinations do not occur, as the stripes are not easilyained approximately 150 rolls.

curved. As we will show, the domain walls are essentially All of the results reported here are for a fixed quench
static, so only the dynamics of the dislocations are of interdepth ofe:VZ/V§—1:O.05. After a quench, domains of zig
est. In this paper, we report on qualitative features of theand zag rolls form within 60 s[The relevant relaxation
dislocation dynamics and their interactions. In addition, wetimes for electroconvection are the director relaxation time
will report on the time dependance of three global measure.6 9 and the charge relaxation tintd x 10°°s).] The do-

oblique roll regime of electroconvectid21].
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FIG. 2. Four images separated by 60 s illustrating the collapse
of a zig domain. The scale bar represents 0.15 mm.

mains are separated by two classes of grain boundaries, F'C- 3- Images separated by 150 s illustrating the incorporation
There are domain walls that extend horizontally. AcrossOf an isolated dislocation into a domain wall. The scale bar repre-
these grain boundaries, the phase of the stripes is continuod¥"® 0.15 mm.
The vertical grain boundaries consist of discrete steps th
are formed by dislocations. Each step contains either an ext
zig or zag roll. Both grain boundaries are illustrated in Fig. 1
schematically in Fig. @& and using an actual image of the

system in Fig. tb). Figure Xa) illustrates the Burgers vector . . X o e
construction for one of the dislocations, demonstrating thfes are effectively stationary. Any vertical “motion” of do-

extra 27 of phase that occurs when traversing a closed paLt}r]nain boundaries occurs when an individual horizontal grain

around the dislocation core. Vertical boundaries on opposit ound_ary 1S ellmlnat_ed. Th_|s elimination occurs w_hen th,e
sides of a domain are always composed of dislocations 0(i>pp05|tely charged dislocations that form the domain wall’s

opposite sign. Also shown is the definition of the domainenfj points(;e_e Fig. ;lannihilate._ If only a single pair of end.
wall lengthL; used later in the analysis of coarsening points annihilate, one has a discrete change of the vertical
The dislolcation number density(t)=n(t)/A was mea- length by 49um. This step size is set by the step height

sured by counting the number of dislocatignét)] in a fixed corregpondmg to one dlslpcgtlon n a vgrtlcally orientated
viewing areaA. Because of the resolution used to take thedomam wall. In order to eliminate a domain completely, the
. 9 ' . entire set of oppositely changed dislocations that form the
images and the fact that the defects were in such close pro

imity to each other within the domain walls, the defects wer Yertical walls must annihilate each other. This is illustrated

i y the series of snapshots in Fig. 2 taken from the archived
counted by hand. At each timp(t) was averaged over ten movie [26]. In this case, the number of dislocations on each

different quer)chgg. For th_e same time_s, we measured ths‘?de of the domain differs by 1. After the elimination of the
length of the individual horizontal domain walls in the sys-

tem, L; [see Fig. 1@)]. From this, we computed both the
average horizontal wall lengti$L)=(1/N)=L;, whereN is

the number of horizontal wallsand the total domain wall
length per aredL=(1/A)XL;]. Both of these quantities were
averaged over seven quenches. The results are plotted in Fi
8, below. Here time is scaled by the director relaxation time
74=0.6 s[14]. In order to avoid issues of the initial growth
of the amplitude and wave number, we only considered times
greater than 408 After this time, the average wave number
changed by less than 0.3%.

3 s/frame can be found in RgR6]. This horizontal mo-
tion is directly responsible for changes in the horizontal
'length scale of the domains.

In contrast to the dislocations, the horizontal grain bound-

IIl. RESULTS

The first obvious difference between this system and pre-
vious experiment§7,1]] is the dramatic anisotropy of the —
growth. The dislocations in the vertical grain boundaries FiG. 4. Eight images separated by 300 s illustrating the motion

move essentially horizontally. Some discrete steps in the vegs a single dislocation highlighted by a circle (a). A dust particle
tical direction are observed. This is very different from theon the surface of the sample is not removed to provide a frame of

usual glide or climb of a dislocations. This is best seen in aeference. Ina)—(d), the dislocation oscillates. Ie)~(h), the dis-
movie of the motion. An archived movie made from snap-location is attracted to one of opposite sign and annihilated. The
shots taken every 60s and with a playback rate okcale bar represents 0.15 mm.
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FIG. 5. Images separated by 150 s illustrating oppositely charge
dislocations moving together, “bouncing,” and ultimately attracting
each other. One can also observe the spread of dislocations in a
vertical wall that is highlighted in Fig. 6. The scale bar represents
0.15 mm.

domain, a single dislocation remains. Many domains con-
tained equal numbers of dislocations, producing no isolated
dislocations.

There are a small number of isolated dislocations, as seen
in Fig. 2. These dislocations move through the sample either
by climbing or gliding. Isolated dislocation either eventually
move into a domain wall or annihilate with an oppositely
charged dislocations in a domain wall. Figure 3 is a series of
shapshots taken from the archived moj2€] that illustrate
the incorporation of an isolated dislocation into a domain FIG. 6. Images separated by 300 s illustrating dislocations in a
wall. This is consistent with the behavior of isolated disloca-domain wall spreading out in time. The scale bar represents
tion predicted in Ref[21]. They rarely annihilate with other 0.15 mm.
isolated dislocations because of their extremely low density.

During the evolution process, the dislocations often exdated, and one must account for the entire field of defects to
hibit behavior substantially more complex than that shown indescribe these more complicated motions. This is outside the
Fig. 2. For example, Figs.(d-4(d) illustrates a case in scope of this paper and will be the subject of future work.
which a single dislocation in a domain wall is observed to beOne also observes initially coherent walls of dislocations un-
undergoing oscillatory motion. Eventually, this defect is dergoing dispersion as they mog&g. 6). This separation of
close enough to an oppositely charged defect that it acceledislocations occurs because the details of the interactions re-
ates toward that defect and is annihilafédgs. 4e)—4(h)]. sult in dislocations within a wall moving with different
Figure 5 illustrates another interesting behavidhis event  speeds. Finally, an extremely rare event is the nucleation of a
is can also be found in the archived moy&8).) Entire walls  new zig or zag domain. What is interesting is that extremely
of oppositely charged defects can approach within some dighin domains are possible in which the horizontal walls are
tance and then move apart. In a simple picture, oppositelglightly curved and the ends contain dislocati¢eee Fig. 7.
charged defects would attract each other and such a bounce Given the complex nature of the dislocation dynamics, for
would not be possible. However, these defects are not isahe purposes of this paper, quantitative measures focused on
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FIG. 7. Images separated by 150 s illustrating the nucleation of
narrow domain without a dislocation pair. The scale bar represents
0.15 mm.

the time dependence of global quantities. The three quanti-
ties of interest are the dislocation density, the domain wall
density, and the total domain wall length. The time depen-
dence of these quantities is able to provide information about
the rate of ordering along the axes parallel and perpendicular

log, (L)

to the director. The results are summarized in Fig. 8. NP T TP PR B B B
One observes that all of the quantities are consistent with 22 24 26 28 30 32 34 36 38 40
power-law growth aftett=1000ry. Fits of the data in this Iog1 (t/Td)
0

regime givep~t0-32:002 | {-0.18#0.07 g (| )~ {0-33£0.02
With the limited range that we are able to observe, it is FIG. 8. (a) Plot of logo(p) versus log(t). Symbols are experi-
difficult to show conclusively that a scaling regime has beemental data. The solid line has a slope —0.32. For comparison, the
reached. However, two conclusions are cléaythe growth  dashed line has a slope of —0.2®) Plot of logy({L)) versus
is anisotropic and is best described by at least two differentog;(t). Symbols are experimental data. The solid line has a slope
exponents, andgb) the exponents are different from previ- 0.33. For comparison, the dashed line has a slope of cpBlot of
ously studied striped systenig,11]. The first point is illus-  10g1o(L) versus logg(t). Symbols are experimental data. The solid
trated in Fig. 8c), where the dashed line has a slope of —1/3 straight line has slope of —0.2. For comparison, the dashed line in
The second point is illustrated by the dashed curves in Figg¢) has a slope of -0.33.
8(a) and 8b). Here, the dashed curves represent the previ-
ously observed growth exponent of 1/4. time dependences @ft) and(L) provide independent mea-
Given that the defect motion is essentially confined to thesyres ofn,.
horizontal(or x) direction, we tested for the existence of two  Another issue is the impact of the finite viewing window,
different growth exponents. Typically, for domain growth, which determines the maximum time for which we can view
the scaling hypothesis assumes all lengths are scaled bytge system. This is seen in Fig(c® where the possible
single scale factoR(t) ~t" and the area scales B For our  scaling ofL(t) breaks down fot>5000r,, even though the
system, because of the obvious anisotropy, we assume thgther measures still exhibit possible scaling. This is under-
horizontal lengths and vertical lengths of domains are scalegiandable because this is the time when most horizontal
independently by scale factots~t™ and L,~t", respec- poundaries extend across our field of view and yet contain
tively. Therefore, the number of domains, in our fixed  significant numbers of step dislocations of opposite sign.
viewing areaA scales ag~A/(L,L,). Because the disloca- Therefore, as these dislocations annihilate with each other,
tions are confined to vertical walls, the number of defects isoth p(t) and (L) continue to evolve, while_(t) remains
given by the number of domains times a typical vertical di-gffectively constant.
mension of the domaim(t) ~cL,. This givesp(t)=n(t)/A
~Ly/(LLy)~t"™. The average horizontal domain wall
length ((L)) scales agL)~L,~t™. As with the number of
defects, the total horizontal domain wall length scaleslas We report observations of the dynamics of an interesting
Therefore, the total domain wall length per viewing area will class of dislocations: dislocations confined to vertically ori-
scale ag ~cL,/A=L,/(L,L,) ~t™". The results in Fig. 8 are ented domain walls between two degenerate oblique rolls.
consistent with two growth exponentg=1/3 andn,=1/5,  The dislocations exhibit highly nontrivial behavior, forming
with the growth in the vertical direction being substantially coherent grain boundaries, exhibiting motion that is neither
slower than the growth in the horizontal direction. Here, theclimb nor glide, and executing interesting dynamics, includ-

IV. SUMMARY
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ing oscillations. The motion of isolated dislocations towardthe stripes results in additional topological defects: disloca-
the horizontal grain boundaries and the confinement of théions. These defects are analogous to vortices inxgn
dislocations to grain boundaries are expected on general amodel — i.e., spins with any orientation in the plane — in
guments from amplitude equatiofi2l]. However, existing that both vortices and dislocations have the same topological
theoretical work has focused on the horizontal domain wallsharge. In our system, they occur predominantly in vertical
and individual dislocation§21]. A more detailed theoretical domain walls or as steps between two horizontal domain
and experimental study is required to understand the fullvalls. Even with this ambiguity, because there is no obvious
range of the observed behavior. For example, it is clear thatonservation lawboth zig rolls and zag rolls are eliminajed
the observed dynamics are often due to the interactions afne expects a growth exponent of 1/2 for both the Ising and
many dislocations. X-Y modeg2]. The observed growth for electroconvection is
Measures of the global properties of the topological de<learly slower, being consistent with 1/3 in one direction and
fects provide some insight into the phase ordering of thisl/5 in the other. This suggests that the confined dislocations
system. On the one hand, the combination of anisotropy ancepresent a new type of coarsening dynamics.
stripes results in a relatively simple system. There are only One direction that may provide further insight into the
two classes of defect@omain walls and dislocationsand  exact cause of the slower dynamics is comparisons with
their basic motions are straightforward. The dislocationssimulations of an anisotropic Swift-Hohenberg mo¢2T].
move horizontally, and the domain walls are essentially staknitial simulations are consistent with a growth exponent of
tionary. This suggests that the phase ordering should be reld+/3 for shallow quenches with pinning effects becoming im-
tively straightforward to understand. On the other hand, thegortant as a function of quench deg@v]. This will be the
system is an interesting example of how stripes can make th&ubject of future work.
system more complicated than the standard uniform systems.
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