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The dynamics of dislocations confined to grain boundaries in a striped system are studied using electrocon-
vection in the nematic liquid crystal N4. In electroconvection, a striped pattern of convection rolls forms for
sufficiently high driving voltages. We consider the case of a rapid change in the voltage that takes the system
from a uniform state to a state consisting of striped domains with two different wave vectors. The domains are
separated by domain walls along one axis and a grain boundary of dislocations in the perpendicular direction.
The pattern evolves through dislocation motion parallel to the domain walls. We report on features of the
dislocation dynamics. The kinetics of the domain motion is quantified using three measures: dislocation
density, average domain wall length, and total domain wall length per area. All three quantities exhibit behavior
consistent with power-law evolution in time, with the defect density decaying ast−1/3, the average domain wall
length growing ast1/3, and the total domain wall length decaying ast−1/5. The two different exponents are
indicative of the anisotropic growth of domains in the system.
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I. INTRODUCTION

The dynamics of topological defects are observed to
dominate the temporal evolution of patterns in many physi-
cal systems. However, our understanding of the quantitative
contribution of the defect dynamics to the evolution of pat-
terns is still not complete. One area in which topological
defects potentially play a central role is the growth of do-
mains in a patterned system after a sudden change in the
external parameters. For many striped systems, such as
diblock copolymers and convection in fluids, many of the
topological defects(such as disclinations and domain walls)
are the same as those that exist in classic models for the
growth of “uniform domains,” such as Ising models orx-y
models[1]. For uniform systems, the contribution of the to-
pological defects to the time evolution of the domains is
relatively well understood[2], whereas this is not the case
for striped systems.

It is useful to briefly review the situation for uniform do-
main growth[2]. One is generally interested in the evolution
of a system after a rapid change of an external parameter, or
a quench. Typically, one considers an initially uniform state
that immediately after the quench is no longer an equilibrium
or steady-state phase of the system. The new equilibrium
phase is degenerate, and domains of the different states form.
For example, in an Ising system, one would have domains of
up and down spins. During the subsequent evolution of the
system, orcoarsening, the domains are characterized by a
single length scale. This length grows as a power of timetn,
where n is the growth exponent. We use the designation
“uniform domains” to refer to systems in which, within a
domain, the system is uniform. Examples of this type of
system include magnetic systems, metallic alloys, binary flu-
ids, and nematic liquid crystals[2]. One of the main goals of
this field is to understand the possible values ofn and other
features of the late time scaling. For uniform systems, much
of the late-time behavior can be understood in terms of the
topological defects of the order parameter[2]. For most
cases, the growth exponent is 1/3 if the order parameter is

conserved, such as in binary fluids, and the exponent is 1/2
if it is not conserved, as in magnetic systems[2]. Various
interesting alternate cases exist, especially for thex-y model
in one and two dimensions[2]. In contrast, no similar gen-
eral framework exists for patterned domains. These are sys-
tems in which, within a domain, the system exhibits a pat-
tern, such as stripes.

Stripes, or more generally patterns, occur in a wide range
of systems[1,3], including convecting fluids, animal coats,
polymer melts, and ferromagnets. Stripes occur both as an
equilibrium state of the system, such as in diblock copoly-
mers, and as a result of external driving, as in convection in
fluids. A sudden change of an external parameter, aquench,
can bring the system from a spatially uniform state to a
striped state that undergoes coarsening, or phase ordering.
The coarsening of striped domains has focused onisotropic
systems[4–9], with a significant fraction of the work focus-
ing on simulations of model equations, such as the Swift-
Hohenberg equation[4–6,8,10]. Experimental work has been
limited to two systems, one isotropic(diblock copolymers
[7,9]) and one anisotropic(electroconvection in nematic liq-
uid crystals[11,12]). For isotropic systems, the stripes can
have any orientation. In this case, the dominant defects are
disclinations and domain walls, though dislocations are ob-
served as well. For diblock copolymers, the measured
growth exponent is consistent withn=1/4. Detailed studies
of the disclination dynamics are able to explain this mea-
sured exponent[7,9].

For simulations of isotropic systems, growth exponents
are usually consistent with 1/4[4–6] or 1/5 [4–6,11]. Fac-
tors affecting the measured exponent include external noise
and the quantity used to characterize the domains. There is
evidence that for small enough quench depths the growth
exponent is 1/3[8,10,13]. An open question is the connec-
tion between the simulations and experiments with the
diblock copolymer systems. The dominant defects appear to
be different between the simulations and experiment, leaving
open the question of a general explanation for the coarsening
behavior.
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For electroconvection(an anisotropic system), two main
classes of patterns occur as the initial transition: normal and
oblique rolls[14–16]. Electroconvection uses a nematic liq-
uid crystal. The molecules of a liquid crystal align on aver-
age along a particular axis, referred to as the director[17].
Normal rolls consist of a system of parallel rolls oriented
with the wave vector parallel to the director field(the aver-
age axis of alignment for the molecules). The main defect in
the normal roll regime is isolated dislocations. The dynamics
of these dislocations have been studied both experimentally
and theoretically[18–21], though not in the context of do-
main growth. Oblique rolls correspond to stripes in which
the wave vector forms a nonzero angle with respect to the
undistorted director field. In the oblique roll regime, a
quench typically produces a pattern consisting of domains of
stripes with only two orientations, referred to as zig and zag
rolls. In this case, the main defects are domain walls and
dislocations. For a particular case of electroconvection,
growth exponents of 1/4 were observed[11]. However, in
contrast to isotropic systems, disclinations were not present
in this system. Again, this points to the need to better under-
stand the dynamics of the various classes of defects if a
general framework for understanding phase ordering in pat-
tern forming systems is to emerge.

In considering the existing work, there are at least two
obvious questions. Given that the uniform and pattern form-
ing systems exhibit similar topological defects, why are the
resulting growth exponents so different? Given the range of
growth exponents observed for pattern forming systems, can
they even be explained in terms of the dynamics of topologi-
cal defects? An important step in answering both of these
questions is elucidation of the defect dynamics. The work
with diblock copolymers has already made important contri-
butions along these lines for disclinations. In this paper, we
focus on the dynamics of confined dislocations found in the
oblique roll regime of electroconvection[21].

Figure 1(b) is a top view of a pattern in an electroconvec-
tion cell that illustrates the defects of interest in this paper.
The cell consists of a nematic liquid crystal confined be-
tween specially treated glass plates that align the director
parallel to the plates along a single axis. This axis is defined
to be thex axis, or horizontal direction. They axis, or verti-
cal direction, is also parallel to the glass plates, but perpen-
dicular to the undistorted director. Thez axis is taken per-
pendicular to the plates. The nematic liquid crystal is doped
with ionic impurities. An ac voltage is applied perpendicular
to the plates. There exists a critical value of the applied volt-
ageVc at which a transition from a spatially uniform state to
a striped state occurs. The striped state consists of convection
rolls with a corresponding periodic variation of the director
and charge density. As shown in Fig. 1, we studied the case
of oblique rolls, and the two classes of topological defects
are domain walls and dislocations. The dislocations are spe-
cial in that they are mostly confined to vertical domain walls.
Disclinations do not occur, as the stripes are not easily
curved. As we will show, the domain walls are essentially
static, so only the dynamics of the dislocations are of inter-
est. In this paper, we report on qualitative features of the
dislocation dynamics and their interactions. In addition, we
will report on the time dependance of three global measures

of defect kinetics: dislocation density, average domain wall
length, and total domain wall length per area. The rest of the
paper is organized as follows. Section II describes the experi-
mental details. Section III presents the results, and Sec. IV is
a summary and discussion of the results.

II. EXPERIMENTAL DETAILS

The details of the experimental apparatus are described in
Ref. [22]. The nematic liquid crystal N4 was doped with
0.1 wt% of tetran-butylammonium bromidefsC4H9d4NBrg.
Commercial cells[23] with a quoted thickness of 23mm and
1 cm2 electrodes were used, giving an aspect ratio of 435.
The average wavelength of the rolls was 51mm. The sample
temperature was maintained at 30.0±0.002°C. The patterns
were observed from above using a modified shadowgraph
setup [22,24,25] that emphasized the contrast between zig
and zag rolls. The magnification was chosen to monitor the
largest possible area of the sample while maintaining enough
resolution to resolve the stripe pattern. The area imaged con-
tained approximately 150 rolls.

All of the results reported here are for a fixed quench
depth ofe=V2/Vc

2−1=0.05. After a quench, domains of zig
and zag rolls form within 60 s.[The relevant relaxation
times for electroconvection are the director relaxation time
s0.6 sd and the charge relaxation times4310−5sd.] The do-

FIG. 1. (a) A schematic drawing illustrating a transition from a
zig to a zag and back to a zig region of the system. The black lines
represent lines of constant phase between the stripes. There are two
horizontal domain walls, one at each transition. Also, one example
of each type of step dislocation is shown. The Burgers vector is also
illustrated for one of the dislocations. The length of a horizontal
domain wall is indicated byLi. (b) A close-up of a section of the
system that shows two step dislocations(black squares). The white
squares are provided as an aid in counting the zig and zag rolls. One
finds that there are two more zig rolls than zag, as expected with
two dislocations. The dashed line highlights one of the horizontal
domain walls. The scale bar represents 0.15 mm.
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mains are separated by two classes of grain boundaries.
There are domain walls that extend horizontally. Across
these grain boundaries, the phase of the stripes is continuous.
The vertical grain boundaries consist of discrete steps that
are formed by dislocations. Each step contains either an extra
zig or zag roll. Both grain boundaries are illustrated in Fig. 1,
schematically in Fig. 1(a) and using an actual image of the
system in Fig. 1(b). Figure 1(a) illustrates the Burgers vector
construction for one of the dislocations, demonstrating the
extra 2p of phase that occurs when traversing a closed path
around the dislocation core. Vertical boundaries on opposite
sides of a domain are always composed of dislocations of
opposite sign. Also shown is the definition of the domain
wall lengthLi used later in the analysis of coarsening.

The dislocation number densityrstd=nstd /A was mea-
sured by counting the number of dislocationsfnstdg in a fixed
viewing areaA. Because of the resolution used to take the
images and the fact that the defects were in such close prox-
imity to each other within the domain walls, the defects were
counted by hand. At each time,rstd was averaged over ten
different quenches. For the same times, we measured the
length of the individual horizontal domain walls in the sys-
tem, Li [see Fig. 1(a)]. From this, we computed both the
average horizontal wall lengths[kLl=s1/NdoLi, whereN is
the number of horizontal walls] and the total domain wall
length per areafL=s1/AdoLig. Both of these quantities were
averaged over seven quenches. The results are plotted in Fig.
8, below. Here time is scaled by the director relaxation time
td=0.6 s [14]. In order to avoid issues of the initial growth
of the amplitude and wave number, we only considered times
greater than 400td. After this time, the average wave number
changed by less than 0.3%.

III. RESULTS

The first obvious difference between this system and pre-
vious experiments[7,11] is the dramatic anisotropy of the
growth. The dislocations in the vertical grain boundaries
move essentially horizontally. Some discrete steps in the ver-
tical direction are observed. This is very different from the
usual glide or climb of a dislocations. This is best seen in a
movie of the motion. An archived movie made from snap-
shots taken every 60 s and with a playback rate of

0.3 s/ frame can be found in Ref.[26]. This horizontal mo-
tion is directly responsible for changes in the horizontal
length scale of the domains.

In contrast to the dislocations, the horizontal grain bound-
aries are effectively stationary. Any vertical “motion” of do-
main boundaries occurs when an individual horizontal grain
boundary is eliminated. This elimination occurs when the
oppositely charged dislocations that form the domain wall’s
end points(see Fig. 1) annihilate. If only a single pair of end
points annihilate, one has a discrete change of the vertical
length by 49mm. This step size is set by the step height
corresponding to one dislocation in a vertically orientated
domain wall. In order to eliminate a domain completely, the
entire set of oppositely changed dislocations that form the
vertical walls must annihilate each other. This is illustrated
by the series of snapshots in Fig. 2 taken from the archived
movie [26]. In this case, the number of dislocations on each
side of the domain differs by 1. After the elimination of the

FIG. 2. Four images separated by 60 s illustrating the collapse
of a zig domain. The scale bar represents 0.15 mm.

FIG. 3. Images separated by 150 s illustrating the incorporation
of an isolated dislocation into a domain wall. The scale bar repre-
sents 0.15 mm.

FIG. 4. Eight images separated by 300 s illustrating the motion
of a single dislocation highlighted by a circle in(a). A dust particle
on the surface of the sample is not removed to provide a frame of
reference. In(a)–(d), the dislocation oscillates. In(e)–(h), the dis-
location is attracted to one of opposite sign and annihilated. The
scale bar represents 0.15 mm.
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domain, a single dislocation remains. Many domains con-
tained equal numbers of dislocations, producing no isolated
dislocations.

There are a small number of isolated dislocations, as seen
in Fig. 2. These dislocations move through the sample either
by climbing or gliding. Isolated dislocation either eventually
move into a domain wall or annihilate with an oppositely
charged dislocations in a domain wall. Figure 3 is a series of
snapshots taken from the archived movie[26] that illustrate
the incorporation of an isolated dislocation into a domain
wall. This is consistent with the behavior of isolated disloca-
tion predicted in Ref.[21]. They rarely annihilate with other
isolated dislocations because of their extremely low density.

During the evolution process, the dislocations often ex-
hibit behavior substantially more complex than that shown in
Fig. 2. For example, Figs. 4(a)–4(d) illustrates a case in
which a single dislocation in a domain wall is observed to be
undergoing oscillatory motion. Eventually, this defect is
close enough to an oppositely charged defect that it acceler-
ates toward that defect and is annihilated[Figs. 4(e)–4(h)].
Figure 5 illustrates another interesting behavior.(This event
is can also be found in the archived movie[26].) Entire walls
of oppositely charged defects can approach within some dis-
tance and then move apart. In a simple picture, oppositely
charged defects would attract each other and such a bounce
would not be possible. However, these defects are not iso-

lated, and one must account for the entire field of defects to
describe these more complicated motions. This is outside the
scope of this paper and will be the subject of future work.
One also observes initially coherent walls of dislocations un-
dergoing dispersion as they move(Fig. 6). This separation of
dislocations occurs because the details of the interactions re-
sult in dislocations within a wall moving with different
speeds. Finally, an extremely rare event is the nucleation of a
new zig or zag domain. What is interesting is that extremely
thin domains are possible in which the horizontal walls are
slightly curved and the ends contain dislocations(see Fig. 7).

Given the complex nature of the dislocation dynamics, for
the purposes of this paper, quantitative measures focused on

FIG. 5. Images separated by 150 s illustrating oppositely charge
dislocations moving together, “bouncing,” and ultimately attracting
each other. One can also observe the spread of dislocations in a
vertical wall that is highlighted in Fig. 6. The scale bar represents
0.15 mm.

FIG. 6. Images separated by 300 s illustrating dislocations in a
domain wall spreading out in time. The scale bar represents
0.15 mm.
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the time dependence of global quantities. The three quanti-
ties of interest are the dislocation density, the domain wall
density, and the total domain wall length. The time depen-
dence of these quantities is able to provide information about
the rate of ordering along the axes parallel and perpendicular
to the director. The results are summarized in Fig. 8.

One observes that all of the quantities are consistent with
power-law growth aftert<1000td. Fits of the data in this
regime giver, t−0.32±0.02, L, t−0.18±0.07, and kLl, t0.33±0.02.
With the limited range that we are able to observe, it is
difficult to show conclusively that a scaling regime has been
reached. However, two conclusions are clear:(a) the growth
is anisotropic and is best described by at least two different
exponents, and(b) the exponents are different from previ-
ously studied striped systems[7,11]. The first point is illus-
trated in Fig. 8(c), where the dashed line has a slope of −1/3.
The second point is illustrated by the dashed curves in Figs.
8(a) and 8(b). Here, the dashed curves represent the previ-
ously observed growth exponent of 1/4.

Given that the defect motion is essentially confined to the
horizontal(or x) direction, we tested for the existence of two
different growth exponents. Typically, for domain growth,
the scaling hypothesis assumes all lengths are scaled by a
single scale factorRstd, tn and the area scales asR2. For our
system, because of the obvious anisotropy, we assume that
horizontal lengths and vertical lengths of domains are scaled
independently by scale factorsLx, tnx and Ly, tny, respec-
tively. Therefore, the number of domains,c, in our fixed
viewing areaA scales asc,A/ sLxLyd. Because the disloca-
tions are confined to vertical walls, the number of defects is
given by the number of domains times a typical vertical di-
mension of the domain:nstd,cLy. This givesrstd=nstd /A
,Ly/ sLxLyd, t−nx. The average horizontal domain wall
length skLld scales askLl,Lx, tnx. As with the number of
defects, the total horizontal domain wall length scales ascLx.
Therefore, the total domain wall length per viewing area will
scale asL,cLx/A=Lx/ sLxLyd, t−ny. The results in Fig. 8 are
consistent with two growth exponentsnx=1/3 andny=1/5,
with the growth in the vertical direction being substantially
slower than the growth in the horizontal direction. Here, the

time dependences ofrstd and kLl provide independent mea-
sures ofnx.

Another issue is the impact of the finite viewing window,
which determines the maximum time for which we can view
the system. This is seen in Fig. 8(c), where the possible
scaling ofLstd breaks down fort.5000td, even though the
other measures still exhibit possible scaling. This is under-
standable because this is the time when most horizontal
boundaries extend across our field of view and yet contain
significant numbers of step dislocations of opposite sign.
Therefore, as these dislocations annihilate with each other,
both rstd and kLl continue to evolve, whileLstd remains
effectively constant.

IV. SUMMARY

We report observations of the dynamics of an interesting
class of dislocations: dislocations confined to vertically ori-
ented domain walls between two degenerate oblique rolls.
The dislocations exhibit highly nontrivial behavior, forming
coherent grain boundaries, exhibiting motion that is neither
climb nor glide, and executing interesting dynamics, includ-

FIG. 7. Images separated by 150 s illustrating the nucleation of
narrow domain without a dislocation pair. The scale bar represents
0.15 mm.

FIG. 8. (a) Plot of log10srd versus log10std. Symbols are experi-
mental data. The solid line has a slope −0.32. For comparison, the
dashed line has a slope of −0.25.(b) Plot of log10skLld versus
log10std. Symbols are experimental data. The solid line has a slope
0.33. For comparison, the dashed line has a slope of 0.25.(c) Plot of
log10sLd versus log10std. Symbols are experimental data. The solid
straight line has slope of −0.2. For comparison, the dashed line in
(c) has a slope of −0.33.
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ing oscillations. The motion of isolated dislocations toward
the horizontal grain boundaries and the confinement of the
dislocations to grain boundaries are expected on general ar-
guments from amplitude equations[21]. However, existing
theoretical work has focused on the horizontal domain walls
and individual dislocations[21]. A more detailed theoretical
and experimental study is required to understand the full
range of the observed behavior. For example, it is clear that
the observed dynamics are often due to the interactions of
many dislocations.

Measures of the global properties of the topological de-
fects provide some insight into the phase ordering of this
system. On the one hand, the combination of anisotropy and
stripes results in a relatively simple system. There are only
two classes of defects(domain walls and dislocations), and
their basic motions are straightforward. The dislocations
move horizontally, and the domain walls are essentially sta-
tionary. This suggests that the phase ordering should be rela-
tively straightforward to understand. On the other hand, the
system is an interesting example of how stripes can make the
system more complicated than the standard uniform systems.
This is best seen by comparing the system to two standard
universality classes for phase ordering in uniform systems:
Ising andX-Y models.

Aspects of the electroconvection patterns are analogous to
an Ising system — i.e., a system of spins with two states. In
our system, the two states are the zig and zag rolls, and the
horizontal domain walls are the topological defects one
would expect in an Ising system. However, the presence of

the stripes results in additional topological defects: disloca-
tions. These defects are analogous to vortices in anx-y
model — i.e., spins with any orientation in the plane — in
that both vortices and dislocations have the same topological
charge. In our system, they occur predominantly in vertical
domain walls or as steps between two horizontal domain
walls. Even with this ambiguity, because there is no obvious
conservation law(both zig rolls and zag rolls are eliminated),
one expects a growth exponent of 1/2 for both the Ising and
X-Y modes[2]. The observed growth for electroconvection is
clearly slower, being consistent with 1/3 in one direction and
1/5 in the other. This suggests that the confined dislocations
represent a new type of coarsening dynamics.

One direction that may provide further insight into the
exact cause of the slower dynamics is comparisons with
simulations of an anisotropic Swift-Hohenberg model[27].
Initial simulations are consistent with a growth exponent of
1/3 for shallow quenches with pinning effects becoming im-
portant as a function of quench depth[27]. This will be the
subject of future work.
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